Author:
Sun Zhi-lin,Li Xiao,Zhou Wan,Yan Jun-di,Gao Yue-rong,Li Xiao-wei,Sun Jia-chen,Fang Ke-feng,Zhang Qing,Xing Yu,Qin Ling,Cao Qing-qin
Abstract
Abstract
Chinese chestnut (Castanea mollissima) is an important germplasm resource for the breeding of Castanea species worldwide with vital ecological and economic value. Biotechnology overcomes the limitations of traditional breeding and accelerates germplasm improvement. However, a genetic transformation system for Chinese chestnut has not yet been established. In this study, a stable and efficient Agrobacterium-mediated genetic transformation method for Chinese chestnut is described. Embryogenic calli of C. mollissima cv. ‘Yanshanhongli’ were used as the target material. The sensitivity of embryogenic calli to kanamycin was determined, whereby the proliferation of non-transformed calli was completely inhibited at 180 mg/L. Antibiotic inhibition results for Chinese chestnut embryogenic calli showed that 50 mg/L cefotaxime and 500 μM timentin completely inhibited the growth of Agrobacterium tumefaciens but did not affect the normal growth of Chinese chestnut embryogenic calli. When embryogenic calli were co-cultured for 2 days with Agrobacterium tumefaciens strain AGL1 harboring the PBI121-EGFP plasmid, an embryogenic callus transformation efficiency of 4.55% was obtained, and two transgenic chimera were acquired. This Agrobacterium-mediated transformation system for Chinese chestnut provides a fundamental platform for genetic improvement of core germplasm and for further verification of gene function.
Funder
Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
National Natural Science Foundation of China
Beijing Natural Science Foundation
the National Key Research & Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献