In-planta transient transformation of avocado (Persea americana) by vacuum agroinfiltration of aerial plant parts

Author:

Salazar-González Jorge Alberto,Castro-Medina Manuela,Bernardino-Rivera Luis Enrique,Martínez-Terrazas Eduardo,Casson Stuart A.,Urrea-López RafaelORCID

Abstract

AbstractAvocado, Persea americana Mill, is one of the most traded tropical fruits in the international market. To date, stable and transient transformation has only been achieved for of zygotic embryos and not of adult plant tissue, which limits functional genomics research. We provide the first transient Agrobacterium-mediated transformation methodology in avocado leaves that overcomes the recalcitrance to transformation of this species. We investigated the effect of Agrobacterium strain, leaf stage, wounding pre-treatment, the phytohormone jasmonic acid, and vacuum infiltration on transient transformation of avocado leaves. Using the Agrobacterium strain LBA4404 and the RUBY reporter a transformation frequency of up to 27% was obtained for avocado detached leaves. The transformation efficiency depended on the age of the leaf, with an intermediate stage of leaf development showing the highest efficiency of transient reporter gene expression. Microwounding pre-treatment facilitates agroinfiltration and coupled with leaf age are the primary factors influencing competence for transient transformation. Jasmonic acid did not significantly affect transient transformation in the absence of microwounding. However, microwounding and 250 µM of jasmonic acid acted synergistically to significantly enhance transient expression. Using this methodology with localized vacuum agroinfiltration, transient transformation of attached avocado leaves was achieved. This method unlocks the use of Agrobacterium-mediated transient transformation as a tool for explore gene function and metabolic pathways in both, detached and attached avocado leaves.

Funder

Biological Sciences Research Council

Newton Fund

Publisher

Springer Science and Business Media LLC

Subject

Horticulture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3