Novel inducible promoter DREB1G cloned from date palm exhibits high fold expression over AtRD29 to drought and salinity stress

Author:

Kodackattumannil Preshobha,Whitley Kenna,Sasi Shina,Lekshmi Geetha,Krishnan Saranya,Al Senaani Salima,Kottackal MartinORCID,Amiri Khaled M. A.

Abstract

AbstractRight and timely expression of the stress regulatory genes is required for plants to compete against abiotic stresses; it necessitates the isolation and characterization of stress-responsive promoters for improving crops' tolerance to abiotic stresses. Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes in plants and leads an inevitable role in the adaptation of plants to abiotic stresses. In this study, the promoter region of Phoenix dactylifera (Date palm, a major fruit crop of the arid region) PdDREB1G gene was isolated and characterized for the first time. A comparison of the activity of two promoter fragments, 880 bp (DS) and 1.6 kb (DF) of PdDREB1G to AtRD29A was performed. Histochemical assay displayed remarkable GUS staining and RT-qPCR analysis confirmed the induction of GUS expression in T3 plants of transformed tobacco subjected to different abiotic stresses. Furthermore, compared with the widely used AtRD29A promoter, the relative expression of GUS in leaves by DS and DF was three and twofold higher under salt stress, respectively, while it was twofold in polyethylene glycol (PEG) and abscisic acid (ABA) for DS. Under SA stress, DF and DS displayed 1.5 and onefold expression in leaves, respectively. In the root, DS showed a fourfold increased expression in salt, threefold in PEG and ABA, and twofold in SA. Hence, the DS promoter characterized in the present study becomes a choice over RD29A for abiotic stress responses and is useful to develop stress-tolerant transgenic plants by inducing the expression of stress-inducible genes on stress.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3