In vitro shoot regeneration system from leaves wrapped by bud scales of a multipurpose tree (Neolamarckia cadamba)

Author:

Li Buye,Que Qingmin,Li Chunmei,Zhou Wei,Chen Xiaoyang,Zhang Lifeng,Du Kunpeng,Xu Qixian,Chen Wenping,Zhong Ming,Zeng Zhensen,Huang Xiaoling,Ouyang Kunxi

Abstract

AbstractNeolamarckia cadamba (N. cadamba) is an evergreen tree species known for its rapid growth, remarkable wood properties, and significant value in medicine, feeding, and landscape. In order to clone a N. cadamba individual with excellent genotype, a plant regeneration protocol was successfully established with leaves wrapped by bud scales as explants. The optimal sterilization method for the leaves was 0.1% Mercury Chloride (HgCl2) treatment for 1 min before culturing on Murashige and Skoog’s medium (MS) supplemented with 3.0 mg/L Thidiazuron (TDZ), 0.1 mg/L 2–4 Dichlorophenoxyacetic acid (2-4D), 0.05 mg/L α-Naphthaleneacetic acid (NAA) and 1 mL/L Plant Preservative Mixture (PPM) to induce calluses. The medium containing 1 mL/L PPM could effectively inhibit explant contamination without an unfavorable impact on the final induction rate of callus from the leaves. Three types of calluses were induced from the leaves cultured on the above medium. Among them, only the Type II callus, which was green and nodular, had few particle masses, could differentiate into adventitious shoots on the MS medium supplemented with 1.5 mg/L 6–Benzylaminopurine (6-BA) and 0.05 mg/L NAA, with the induction rate of 78.89% and adventitious shoot number per callus of 11.67. The adventitious shoots were proliferated on the MS medium supplemented with 1.0 mg/L 6-BA and 0.05 mg/L Indole-3- butyric acid (IBA) with the proliferation coefficient of 3.37. And the micro-shoots developed roots in the MS medium supplemented with 0.05 mg/L NAA and 0.05 mg/L IBA. The regeneration protocol can be used in the propagation and large scale production of seedlings with the same genotype as an excellent individual of N. cadamba in the field.

Funder

Forestry Technology Innovation Program of Guangdong, China

The National Key R & D Program of China during the 14th Five-Year Plan Period

the Fundamental Research Funds for the Central Universities of National Engineering Laboratory of Forest Breeding in Beijing Forestry University, Beijing, China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3