Missing symbionts – emerging pathogens? Microbiome management for sustainable agriculture

Author:

Berg Gabriele,Schweitzer Matthias,Abdelfattah Ahmed,Cernava TomislavORCID,Wassermann Birgit

Abstract

AbstractPlant diversification and co-evolution shaped the plant microbiome and vice versa. This resulted in a specific composition of the plant microbiome and a strong connection with the host in terms of functional interplay. Symbionts are part of the microbiota, and important for the plant’s germination and growth, nutrition, as well as stress protection. However, human activities in the Anthropocene are linked to a significant shift of diversity, evenness and specificity of the plant microbiota. In addition, and very importantly, many plant symbionts are missing or no longer functional. It will require targeted microbiome management to support and reintroduce them. In future agriculture, we should aim at replacing harmful chemicals in the field, as well as post-harvest, by using precision microbiome engineering. This is because the plant microbiome is connected across systems and crucial for human and planetary health. This commentary aims to inspire holistic studies for the development of solutions for sustainable agriculture in framework of the One Health and the Planetary Health concepts.

Funder

Horizon 2020 Framework Programme

H2020 Marie Skłodowska-Curie Actions

Ministry of Education, Science and Research, Austria

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3