Monocropping and Intercropping of Maize with Six Food Legumes at Malkerns in Eswatini: Their Effects on Plant Growth, Grain Yield and N2 Fixation, Measured using the 15N Natural Abundance and Ureide Techniques

Author:

Ngwenya Zanele D.ORCID,Mohammed MustaphaORCID,Dakora Felix D.ORCID

Abstract

AbstractIntercropping of legumes and cereals has many benefits to both plant partners. In this study, the effect of legume-maize intercropping on plant growth, grain yield and N2 fixation of six legumes was assessed using the 15N natural abundance and ureide techniques. For this, a field experiment involving six legume species and two cropping systems was established at the Malkerns Research Station, Eswatini during the 2017/2018 cropping season. Based on the 15N isotopic and ureide analysis, the six test legumes respectively obtained 39.06 – 70.19% and 16.46 – 55.79% of their N nutrition from symbiosis. The amounts of N-fixed ranged from 12.66 to 66.57 kg ha−1. In general, high amount of N-fixed by legumes correlated strongly with greater shoot dry matter accumulation (r = 0.7981; p < 0.001) and high grain yield (r = 0.5905; p < 0.001), indicating the importance of N2 fixation in plant growth and reproduction. Legumes grown under monocropping recorded higher plant growth, symbiotic performance and grain yield when compared to those grown in mixed culture with maize. However, shoot %Ndfa was much higher under intercropping than sole cropping due to competition by cereal and legume for soil N. Components of maize yield were similar for the two cropping systems. The %N derived from fixation and %relative ureide-N abundance were significantly correlated (r = 0.4005; p < 0.001), indicating that the 15N natural abundance technique and the ureide method were complementary in measuring N2 fixation in the test legumes. These results have provided some insights on the impact of cropping system on plant growth, symbiotic performance and grain yield of six selected legumes.

Funder

Tshwane University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3