The direct and interactive effects of elevated CO2 and additional nitrate on relative costs and benefits of legume-rhizobia symbiosis

Author:

Oono RyokoORCID,Ho Randy,Jimenez Salinas Andres

Abstract

AbstractRising concentrations of carbon dioxide (CO2) is likely to have important effects on growth and development of plants and on their relationship with symbiotic microbes. A rise in CO2 could increase demand by plant hosts for nutrient resources, which may increase host investments in beneficial symbionts. In the legume-rhizobia mutualism, while elevated CO2 is often associated with increased nodule growth and investment in N2-fixing rhizobia, it is yet unclear if this response depends on the mutualistic quality of the rhizobia. To test if host carbon allocation towards more-beneficial nodules are similar to less-beneficial (but still effective) nodules when plant N demand changes, we manipulated plant C and N status with elevated CO2 and additional nitrate. We used two isogenic Rhizobium etli strains that differ in their ability to synthesize an energy reserve compound, poly-beta-hydroxybutyrate (PHB), as well as their efficiencies for nitrogen fixation and nodulation rates, resulting in two Phaseolus vulgaris host groups with either large number of small nodules or small number of large nodules. The addition of nitrate negatively affected carbon allocation towards nodules, and elevated CO2 reversed this effect, as expected. However, this alleviation of nodule inhibition was greater on plants that started with greater numbers of smaller nodules. If smaller nodules indicate less-efficient or low-fixing rhizobia, this study suggests that increased demand for nitrogen in the face of elevated CO2 has the potential to disproportionately favor less-beneficial strains and increase variation of nitrogen fixation quality among rhizobia.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3