Abstract
AbstractPhosphorus (P) is necessary for nitrogen fixation in the root nodules of soybeans, a symbiotic process whereby plants support bacterial nitrogen fixation to obtain nitrogen needed for plant growth. Nitrogen accumulation, quantity, weight, specific nitrogenase activity (SNA) and acetylene reduction activity (ARA) of root soybean nodules were analyzed, using a broadly targeted metabolomics method incorporating liquid chromatography-mass spectrometry (LC-MS) to study the effects of P level (1, 11, 31, 61 mg/L denoted by P1, P11, P31, P61) on the types and abundance of various metabolites and on the expression of associated metabolic pathways in soybean root nodules. Nitrogen accumulation, quantity, weight, SNA and ARA of root nodules were inhibited by P stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that root nodules responded to P stress by increasing the number of amino acids and derivatives. Down-regulation of ABA, phosphorylcholine, and D-glucose 6-phosphate affected carotenoid biosynthesis, glycerophospholipid metabolism and sugar metabolism which inhibited nodule nitrogen fixation under P stress. More flavonoids were involved in metabolic processes in soybean root nodules under P stress that regulated the nodulation and nitrogen fixation. The pathway ascorbate and aldarate metabolism, and associated metabolites, were involved in the adaptation of the symbiotic soybean root nodule system to P starvation. This work provides a foundation for future investigations of physiological mechanisms that underly phosphorus stress on soybeans.
Funder
the National Natural Science Foundation of China
Postdoctoral Research Foundation of China
Heilongjiang Provincial Postdoctoral Science Foundation
Natural Science Foundation of Heilongjiang Province of China
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献