Nitrogen fixation capacity and metabolite responses to phosphorus in soybean nodules

Author:

Yao YuboORCID,Yuan Hongmei,Wu Guangwen,Yan Jun,Zhao Dongsheng,Chen Si,Kang Qinghua,Ma Chunmei,Gong Zhenping

Abstract

AbstractPhosphorus (P) is necessary for nitrogen fixation in the root nodules of soybeans, a symbiotic process whereby plants support bacterial nitrogen fixation to obtain nitrogen needed for plant growth. Nitrogen accumulation, quantity, weight, specific nitrogenase activity (SNA) and acetylene reduction activity (ARA) of root soybean nodules were analyzed, using a broadly targeted metabolomics method incorporating liquid chromatography-mass spectrometry (LC-MS) to study the effects of P level (1, 11, 31, 61 mg/L denoted by P1, P11, P31, P61) on the types and abundance of various metabolites and on the expression of associated metabolic pathways in soybean root nodules. Nitrogen accumulation, quantity, weight, SNA and ARA of root nodules were inhibited by P stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that root nodules responded to P stress by increasing the number of amino acids and derivatives. Down-regulation of ABA, phosphorylcholine, and D-glucose 6-phosphate affected carotenoid biosynthesis, glycerophospholipid metabolism and sugar metabolism which inhibited nodule nitrogen fixation under P stress. More flavonoids were involved in metabolic processes in soybean root nodules under P stress that regulated the nodulation and nitrogen fixation. The pathway ascorbate and aldarate metabolism, and associated metabolites, were involved in the adaptation of the symbiotic soybean root nodule system to P starvation. This work provides a foundation for future investigations of physiological mechanisms that underly phosphorus stress on soybeans.

Funder

the National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Heilongjiang Provincial Postdoctoral Science Foundation

Natural Science Foundation of Heilongjiang Province of China

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3