Abstract
AbstractAnimals, plants, and fungi live in a microbe-dominated world. Investigating the interactions and processes at the host-microbe interface offers insight to how bacteria influence the development, health, and disease of the host. Optimization of existing imaging technologies and development of novel instrumentation will provide the tools needed to fully understand the dynamic relationship that occurs at the host-microbe interface throughout the lifetime of the host. In this review, we describe the current methods used in cryo-electron microscopy (cryo-EM) including cryo-fixation, sample processing, FIB-SEM, and cryotomography. Further, we highlight the new advances associated with these methods that open the cryo-EM discipline to large, complex multicellular samples, like symbiotic tissues. We describe the advantages and challenges associated with correlative imaging techniques and sample thinning methods like lift-out. By highlighting recent pioneering studies in the large-volume or symbiotic sample workflows, we provide insight into how symbiotic model systems will benefit from cryo-EM methods to provide artefact-free, near-native, macromolecular-scale resolution imaging at the host-microbe interface throughout the development and maintenance of symbiosis. Cryo-EM methods have brought a deep fundamental understanding of prokaryotic biology since its conception. We propose the application of existing and novel cryo-EM techniques to symbiotic systems is the logical next step that will bring an even greater understanding how microbes interact with their host tissues.
Funder
Gordon and Betty Moore Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献