On the exactness and the convergence of the $$l_{1}$$ exact penalty E-function method for E-differentiable optimization problems

Author:

Antczak Tadeusz,Abdulaleem NajeebORCID

Abstract

AbstractThis paper is devoted to introduce and investigate a new exact penalty function method which is called the $$l_{1}$$ l 1 exact penalty E-function method. Namely, we use the aforesaid exact penalty function method to solve a completely new class of nonconvex (not necessarily) differentiable mathematical programming problems, that is, E-differentiable minimization problems. Then, we analyze the most important from a practical point of view property of all exact penalty function methods, that is, exactness of the penalization. Thus, under appropriate E-convexity hypotheses, we prove the equivalence between the original E-differentiable extremum problem and its corresponding penalized optimization problem created in the introduced $$l_{1}$$ l 1 exact penalty E-function method. Further, we also present and investigate the algorithm for this exact penalty function method which minimizes the $$l_{1}$$ l 1 exact penalty E-function. The convergence theorem for the aforesaid algorithm is also established.

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3