Matching individual Ladoga ringed seals across short-term image sequences

Author:

Nepovinnykh EkaterinaORCID,Chelak IliaORCID,Lushpanov Andrei,Eerola TuomasORCID,Kälviäinen HeikkiORCID,Chirkova Olga

Abstract

AbstractAutomated wildlife reidentification has attracted increasing attention in recent years as it provides a non-invasive tool to identify and to track individual wild animals over time. In this paper, the first steps are taken towards the automatic photo-identification of the Ladoga ringed seals (Pusa hispida ladogensis). A method is proposed that takes a sequence of images, each containing multiple individuals as the input, and produces cropped images of seals grouped based on one certain individual per group. The method starts by detecting each seal from the images and proceeds to matching the individual seals between the images. It is shown that high grouping accuracy can be obtained with a general-purpose image retrieval method on an image sequence taken from the same location within a relatively short period of time. Each resulting group contains multiple images of one individual with slightly different variations, for example, in pose and illumination. Utilizing these images simultaneously provides more information for the individual re-identification compared to the traditional approach, i.e., which utilizes just one image at a time. It is further demonstrated that a convolutional neural network based method can be used to extract the unique pelage patterns of the seals despite the low contrast. Finally, a method is proposed and experiments with the novel Ladoga ringed seals data are carried out to provide a proof-of-concept for the individual re-identification.

Funder

The European Union, the Russian Federation and the Republic of Finland via The South-East Finland–Russia CBC

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3