Using camera trap bycatch data to assess habitat use and the influence of human activity on African elephants (Loxodonta africana) in Kasungu National Park, Malawi

Author:

Davis Robert S.ORCID,Gentle Louise K.ORCID,Mgoola William O.,Stone Emma L.ORCID,Uzal AntonioORCID,Yarnell Richard W.ORCID

Abstract

AbstractAfrican elephants (Loxodonta africana) are increasingly exposed to high levels of human disturbance and are threatened by poaching and human–elephant conflict. As anthropogenic pressures continue to increase, both inside and outside protected areas, understanding elephant behavioural responses to human activity is required for future conservation management. Here, we use bycatch data from camera trap surveys to provide inferences on elephant habitat use and temporal activity in Kasungu National Park (KNP), Malawi. The KNP elephant population has declined by ~ 95% since the late 1970s, primarily because of intensive poaching, and information on elephant ecology and behaviour can assist in the species’ recovery. Using occupancy modelling, we show that proximity to water is the primary driver of elephant habitat use in KNP, with sites closer to water having a positive effect on elephant site use. Our occupancy results suggest that elephants do not avoid sites of higher human activity, while results from temporal activity models show that elephants avoid peak times of human activity and exhibit primarily nocturnal behaviour when using the KNP road network. As key park infrastructure is located near permanent water sources, elephant spatiotemporal behaviour may represent a trade-off between resource utilisation and anthropogenic-risk factors, with temporal partitioning used to reduce encounter rates. Increased law enforcement activity around permanent water sources could help to protect the KNP elephant population during the dry season. Our findings highlight that camera trap bycatch data can be a useful tool for the conservation management of threatened species beyond the initial scope of research.

Funder

Nottingham Trent University

Carnivore Research Malawi

Oklahoma Zoo

Idea Wild

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3