Abstract
AbstractTo address biodiversity decline in the era of big data, replicable methods of data processing are needed. Automated methods of individual identification (ID) via computer vision are valuable in conservation research and wildlife management. Rapid and systematic methods of image processing and analysis are fundamental to an ever-growing need for effective conservation research and practice. Bears (ursids) are an interesting test system for examining computer vision techniques for wildlife, as they have variable facial morphology, variable presence of individual markings, and are challenging to research and monitor. We leveraged existing imagery of bears living under human care to develop a multispecies bear face detector, a critical part of individual ID pipelines. We compared its performance across species and on a pre-existing wild brown bear Ursus arctos dataset (BearID), to examine the robustness of convolutional neural networks trained on animals under human care. Using the multispecies bear face detector and retrained sub-applications of BearID, we prototyped an end-to-end individual ID pipeline for the declining Andean bear Tremarctos ornatus. Our multispecies face detector had an average precision of 0.91–1.00 across all eight bear species, was transferable to images of wild brown bears (AP = 0.93), and correctly identified individual Andean bears in 86% of test images. These preliminary results indicate that a multispecies-trained network can detect faces of a single species sufficiently to achieve high-performance individual classification, which could speed-up the transferability and application of automated individual ID to a wider range of taxa.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献