Study of the biological characteristics of human umbilical cord mesenchymal stem cells after long-time cryopreservation

Author:

Zhang Mingqi,Zhao Yan,Wang Le,Zheng Yuqiang,Yu Hui,Dong Xiaoming,He Wei,Yin Zhengqin,Wang Zhuoshi

Abstract

Abstract Human umbilical cord mesenchymal stem cells (hUC-MSCs) have considerable potential in cell therapy. Cryopreservation represents the gold standard in cell storage, but its effect on hUC-MSCs is still not well understood. The aim of this study was to investigate the effect of one year of cryopreservation and thawing on the biological characteristics of hUC-MSCs from the same donors. Fresh hUC-MSCs were cryopreserved in commercial freezing medium (serum-free CellBanker 2) at passage 2. After one year of cryopreservation, the hUC-MSCs were thawed and subcultured to passage 4. The comparison was performed in terms of followings: cell count, viability, morphology, proliferation capacity, differentiation potential and chromosomal stability. The total cell count and viability of hUC-MSCs before and after one year of cryopreservation were 1 × 107 and 96.34% and 0.943 × 107 and 93.81%, respectively. Cryopreserved and fresh hUC-MSCs displayed a similar cell doubling times, expressed the markers CD73, CD90, CD105 and were negative for the markers CD34, CD45, and HLA-DR. Karyotypes were found to be normal after one year of cryopreservation. The trilineage differentiation properties were maintained after cryopreservation. However, when compared to freshly isolated hUC-MSCs from the same donor, cryopreserved hUC-MSCs exhibited decreased expression of osteogenesis- and chondrogenesis-related genes including Runx2, Sox9, and Col1a1, and increased expression of adipogenesis-related genes. These results demonstrated that cryopreservation did not affect cell morphology, surface marker expression, cell viability, proliferative capacity, or chromosomal stability. However, the osteogenic and chondrogenic differentiation capacities of cryopreserved hUC-MSCs were slightly reduced compared with those of fresh cells from the same donor. Graphical abstract

Funder

shenyang science and technology bureau

department of science and technology of liaoning province

shenyang science and technology innovation talents support project

Publisher

Springer Science and Business Media LLC

Subject

Transplantation,Cell Biology,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3