Assessment of the efficiency of different chemical treatments and ultrasonic cleaning for defatting of cancellous bone samples

Author:

Wang FangxingORCID,Metzner Florian,Osterhoff Georg,Schleifenbaum Stefan

Abstract

AbstractOur study aimed to asses the defatting efficiency of different methods, which are commonly used and easily available in the laboratory in order to find a method that is effective, convenient, safe, and economical. Cylindrical cancellous bone specimens were obtained from fresh-frozen human cadaver femoral condyles, cut into multiple small specimens (Ø8 × 2 mm), and assigned to two groups that were treated with either chemical solvent soaking (Solvent group) or ultrasonic cleaning (Ultrasound group). Each group was divided into several subgroups based on different treatments. Digital photographs were taken of each specimen. The difference of material density (Δρb), apparent density (Δρapp), and porosity (ΔP) before and after treatment were used as evaluation indicators. For the solvent group, in Δρb, only the combination of 99% ethanol and detergent solution showed a significant difference before and after treatment (P = 0.00). There was no significant difference in ΔP among acetone, the mixture of 99% ethanol and acetone, and the combination of 99% ethanol and detergent solution (P = 0.93). For the ultrasound group, the median of all subgroups in Δρapp and ΔP were all lower than the solvent group. The combination of 99% ethanol and detergent solution (v/v = 1:20), as well as the mixture of 99% ethanol and acetone (v/v = 1:1), seem to be the optimal defatting methods for 2 mm thick cancellous bone slices due to their effectiveness, availability, low-cost and safety. Chemical soaking for 24 h is more effective than ultrasonic cleaning with 99% ethanol or acetone for 20 or 40 min.

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Transplantation,Cell Biology,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3