Impact of storage time prior to cryopreservation on mechanical properties of aortic homografts

Author:

Axelsson IdaORCID,Gustafsson AnnaORCID,Isaksson HannaORCID,Nilsson JohanORCID,Malm TorstenORCID

Abstract

AbstractOptimal time spans in homograft procurement are still debatable among tissue banks and needs to be further investigated. Cell viability decreases at longer preparation intervals, but the effect on collagen and elastic fibers has not been investigated to the same extent. These fibers are of importance to the homograft elasticity and strength. The objective of this study was to analyze the mechanical properties of homograft tissue at different time spans in the procurement process. Ten aortic homografts were collected at the Tissue Bank in Lund. Twelve samples were obtained from each homograft, cryopreserved in groups of three after 2–4 days, 7–9 days, 28–30 days, and 60–62 days in antibiotic decontamination. Mechanical testing was performed with uniaxial tensile tests, calculating elastic modulus, yield stress and energy at yield stress. Two randomly selected samples were assessed with light microscopy. Procurement generated a total of 120 samples, with 30 samples in each time group. Elastic modulus and yield stress was significantly higher in samples cryopreserved after 2–4 days (2.7 MPa (2.5-5.0) and 0.78 MPa (0.68-1.0)) compared to 7–9 days (2.2 MPa (2.0-2.6) and 0.53 MPa (0.46–0.69)), p = 0.008 and 0.011 respectively. Light microscopy did not show any difference in collagen and elastin at different time spans. There was a significant decrease in elastic modulus and yield stress after 7 days of decontamination at 4 °C compared to 2–4 days. This could indicate some deterioration of elastin and collagen at longer decontamination intervals. Clinical significance of these findings remains to be clarified.

Funder

Independent Order of Odd Fellows

Swedish Fund of Congenital Heart Defects

Governmental funding from National Health Services, Sweden

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Transplantation,Cell Biology,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3