Predicting Future Service Use in Dutch Mental Healthcare: A Machine Learning Approach

Author:

van Mens KasperORCID,Kwakernaak Sascha,Janssen Richard,Cahn Wiepke,Lokkerbol Joran,Tiemens Bea

Abstract

AbstractA mental healthcare system in which the scarce resources are equitably and efficiently allocated, benefits from a predictive model about expected service use. The skewness in service use is a challenge for such models. In this study, we applied a machine learning approach to forecast expected service use, as a starting point for agreements between financiers and suppliers of mental healthcare. This study used administrative data from a large mental healthcare organization in the Netherlands. A training set was selected using records from 2017 (N = 10,911), and a test set was selected using records from 2018 (N = 10,201). A baseline model and three random forest models were created from different types of input data to predict (the remainder of) numeric individual treatment hours. A visual analysis was performed on the individual predictions. Patients consumed 62 h of mental healthcare on average in 2018. The model that best predicted service use had a mean error of 21 min at the insurance group level and an average absolute error of 28 h at the patient level. There was a systematic under prediction of service use for high service use patients. The application of machine learning techniques on mental healthcare data is useful for predicting expected service on group level. The results indicate that these models could support financiers and suppliers of healthcare in the planning and allocation of resources. Nevertheless, uncertainty in the prediction of high-cost patients remains a challenge.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health,Public Health, Environmental and Occupational Health,Health Policy,Pshychiatric Mental Health

Reference38 articles.

1. Bertsimas, D., Kane, M. A., Kryder, J. C., Pandey, R., & Wang, G. (2008). Algorithmic prediction of health-care costs. Operations Research, 56(6), 1382–1392. https://doi.org/10.1287/opre.1080.0619

2. Boonzaaijer, G., van Drunen, P., & Visser, J. (2015). Stagering: de toegevoegde waarde voor de zorgvraagzwaarte-indicator

3. Boscardin, C. K., Gonzales, R., Bradley, K. L., & Raven, M. C. (2015). Predicting cost of care using self-reported health status data. BMC Health Services Research, 15(1), 1–8. https://doi.org/10.1186/s12913-015-1063-1

4. Breiman, L., Cutler, A., Liaw, A., & Wiener, M. (2015). The randomForest package. R Core Team.

5. Broekman, T. G., & Schippers, G. M. (2017). Het “Engelse model” in de ggz-a fairy tale? Tijdschrift Voor Psychiatrie, 59(11), 702–709.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3