Abstract
AbstractWe apply a two-step data driven approach to determine the causal impact of the clean air zone (CAZ) policy on air quality in Birmingham, UK. Levels of NO2, NOx and PM2.5 before and after CAZ implementation were collected from automatic air quality monitoring sites both within and outside the CAZ. We apply a unique combination of two recent methods: (1) a random forest machine learning method to strip out the effects of meteorological conditions on air pollution levels, and then (2) the Augmented Synthetic Control Method (ASCM) on the de-weathered air pollution data to isolate the causal effect of the CAZ. We find that, during the first year following the formal policy implementation, the CAZ led to significant but modest reductions of NO2 and NOX levels measured at the roadside within (up to 3.4% and 5.4% of NO2 and NOX, respectively) and outside (up to 6.6% and 11.9%) the zone, with no detectable changes at the urban background site outside the CAZ. No significant impacts of the CAZ were found on concentrations of fine particulates (PM2.5). Our analysis demonstrates the short-term effectiveness of CAZ in reducing concentrations of NO2 and NOX.
Funder
Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Economics and Econometrics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献