The environmental effects of the “twin” green and digital transition in European regions

Author:

Bianchini StefanoORCID,Damioli GiacomoORCID,Ghisetti ClaudiaORCID

Abstract

AbstractThis study explores the nexus between digital and green transformations—the so-called “twin” transition—in European regions in an effort to identify the impact of digital and environmental technologies on the greenhouse gas (GHG) emissions originating from industrial production. We conduct an empirical analysis based on an original dataset that combines information on environmental and digital patent applications with information on GHG emissions from highly polluting plants for the period 2007–2016 at the metropolitan region level in the European Union and the UK. Results show that the local development of environmental technologies reduces GHG emissions, while the local development of digital technologies increases them, albeit in the latter case different technologies seem to have different impacts on the environment, with big data and computing infrastructures being the most detrimental. We also find differential impacts across regions depending on local endowment levels of the respective technologies: the beneficial effect of environmental technologies is stronger in regions with large digital technology endowments and, conversely, the detrimental effect of digital technologies is weaker in regions with large green technology endowments. Policy actions promoting the “twin” transition should take this evidence into account, in light of the potential downside of the digital transformation when not combined with the green transformation.

Funder

Horizon 2020 Framework Programme

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3