Falsification of the instrumental variable conditions in Mendelian randomization studies in the UK Biobank

Author:

Guo KellyORCID,Diemer Elizabeth W.,Labrecque Jeremy A.,Swanson Sonja A.

Abstract

AbstractMendelian randomization (MR) is an increasingly popular approach to estimating causal effects. Although the assumptions underlying MR cannot be verified, they imply certain constraints, the instrumental inequalities, which can be used to falsify the MR conditions. However, the instrumental inequalities are rarely applied in MR. We aimed to explore whether the instrumental inequalities could detect violations of the MR conditions in case studies analyzing the effect of commonly studied exposures on coronary artery disease risk.Using 1077 single nucleotide polymorphisms (SNPs), we applied the instrumental inequalities to MR models for the effects of vitamin D concentration, alcohol consumption, C-reactive protein (CRP), triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol on coronary artery disease in the UK Biobank. For their relevant exposure, we applied the instrumental inequalities to MR models proposing each SNP as an instrument individually, and to MR models proposing unweighted allele scores as an instrument. We did not identify any violations of the MR assumptions when proposing each SNP as an instrument individually. When proposing allele scores as instruments, we detected violations of the MR assumptions for 5 of 6 exposures.Within our setting, this suggests the instrumental inequalities can be useful for identifying violations of the MR conditions when proposing multiple SNPs as instruments, but may be less useful in determining which SNPs are not instruments. This work demonstrates how incorporating the instrumental inequalities into MR analyses can help researchers to identify and mitigate potential bias.

Funder

ZonMw

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Epidemiology

Reference40 articles.

1. Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. https://doi.org/10.1136/bmj.k601.

2. Johansson A, Marroni F, Hayward C, et al. Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene. Obes (Silver Spring). 2010;18(4):803–8. https://doi.org/10.1038/oby.2009.359.

3. Hernan MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17(4):360–72. https://doi.org/10.1097/01.ede.0000222409.00878.37.

4. Pearl J. On the testability of causal models with latent and instrumental variables. Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. Montréal, Qué, Canada: Morgan Kaufmann Publishers Inc.; 1995. p. 435–43.

5. Bonet B. Instrumentality tests revisited. Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence. Seattle, Washington: Morgan Kaufmann Publishers Inc.; 2001. p. 48–55.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3