In situ polymerization of styrene–clay nanocomposites and their properties

Author:

Mrah LahouariORCID,Meghabar Rachid

Abstract

Abstract This work focuses on the preparation and characterization of polystyrene/organoclay nanocomposites. The effects of the nature of the organoclays and the method of preparation were studied in order to evaluate their morphological, thermal and mechanical properties. X-ray diffraction (SAXS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM, TEM), atomic force microscope (AFM) were used to determine the characteristics of the resulting materials. Initially, cetyltrimethylammonium bromide was used as an organomodifier to modify the clay to form an organic clay. After that, polystyrene/organoclay nanocomposites were synthesized by an in situ mass polymerization process in which styrene was polymerized in the presence of different proportions of organoclay ranging from 1 to 15% by weight. The results obtained confirm the intercalation of cetyltrimethylammonium bromide (CTA) surfactant in the clay layers, while the nanocomposites obtained showed morphologies in which the exfoliated forms were obtained. Nanocomposites showed a significant improvement in thermal stability compared to unmodified polystyrene. The highlighting of the modification was examined by mechanical tests (shock, traction). The Charpy impact test showed an increase in impact resilience, and this is mainly due to a better interfacial adhesion of the matrix. The tensile test showed an improvement in stiffness. Graphic abstract The preparation of polystyrene–clay nanocomposites containing various amounts of organoclays ranging from 1 to 15% using the mass polymerization technique has shown the positive effect of the introduction of a cetyltrimethylammonium bromide surfactant chain on the thermal stability of the nanocomposites. Exfoliated morphologies were obtained for the majority of the prepared nanocomposites. A structure, surface and thermal property relationship was established based on TGA, XRD and TEM/SEM analyses.

Funder

State Key Laboratory of Molecular Engineering of Polymers

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Condensed Matter Physics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3