Enhancing wound regeneration potential of fibroblasts using ascorbic acid-loaded decellularized baby spinach leaves

Author:

Dikici SerkanORCID

Abstract

AbstractDecellularization of plant tissues is an emerging route to fabricate scaffolds for tissue engineering and regenerative medicine. Although significant progress has been made in the field of plant tissue decellularization, functionalization of plant scaffolds is still an emerging field, and loading them with L-ascorbic acid to promote skin regeneration has not yet been reported. L-ascorbic acid is an antioxidant that plays a key role in collagen synthesis as a cofactor of lysyl hydroxylase and prolyl hydroxylase. It has been shown to have significant importance in physiological wound healing by stimulating fibroblasts to produce collagen at both the molecular and the genetic levels. In this work, we aimed to fabricate an ascorbic acid-releasing bioactive scaffold by introducing a stable form of ascorbic acid, L-ascorbic acid 2-phosphate (AA2P), into decellularized baby spinach leaves and investigated its biological activity in vitro. Our results demonstrated that AA2P could be easily introduced into decellularized baby spinach leaf scaffolds and subsequently released within the effective dose range. AA2P-releasing baby spinach leaves were found to increase metabolic activity and enhance collagen synthesis in L929 fibroblasts after 21 days. In conclusion, this study demonstrated the fabrication of a novel functionalized skin tissue engineering scaffold and made a significant contribution to the fields of plant decellularization and skin tissue engineering. Graphical abstract

Funder

İzmir Yüksek Teknoloji Enstitüsü

Türkiye Sağlık Enstitüleri Başkanlığı

Izmir Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3