Prediction of mechanical and thermal properties in bronze-filled polyamide 66 composites using artificial neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Condensed Matter Physics,General Chemistry
Link
https://link.springer.com/content/pdf/10.1007/s00289-021-03751-5.pdf
Reference51 articles.
1. AL-Oqla FM (2017) Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 24:2523–2530. https://doi.org/10.1007/s10570-017-1280-3
2. AL-Oqla FM (2021) Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. J Polym Environ 29:892–899. https://doi.org/10.1007/s10924-020-01889-3
3. AL-Oqla FM, El-Shekeil YA (2019) Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. J Clean Prod 222:865–870. https://doi.org/10.1016/j.jclepro.2019.03.042
4. AL-Oqla FM, Hayajneh MT, Fares O (2019) Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. J Clean Prod 241:118256. https://doi.org/10.1016/j.jclepro.2019.118256
5. AL-Oqla FM, Salit MS, Ishak MR, Aziz NA (2014) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources 9:4608–4621. https://doi.org/10.15376/biores.9.3.4608-4621
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive review on fillers and mechanical properties of 3D printed polymer composites;Materials Today Communications;2024-08
2. Predicting viscosity in polyurethane polymerization for liquid composite molding using neural networks and surface methodology;Polymer Bulletin;2023-12-24
3. Premature and Extended Contact Behaviour of PA 6 and PA 6,6 Gears;Springer Proceedings in Materials;2023-12-04
4. Characterization of Waste Micro and Nano Tungsten Carbide Powder Reinforced Polyamide 66 Matrix Composites;Materials Science Forum;2023-11-10
5. Establishing a Model for Predicting Material Wear and Crack Initiation Based on BP Neural Network: Taking Ceramic Materials as an Example;2023 8th International Conference on Information Systems Engineering (ICISE);2023-06-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3