Abstract
AbstractChemical modification of poly(vinyl alcohol) (PVA) with different monomers is a convention method for the development of its properties. In this study, the new multifunctional membranes (PVA-A)1–3, (PVA-P)1–3, (PVA-AG) and (PVA-PG) were designed and synthesized by the reaction of PVA with heterocyclic compounds [N,Nʹ-bi-α-azido succinimide (A), N-phthalimido-α-azido succinimide (P)] and using glutaraldehyde (G) as cross-linker, respectively. The new membranes were characterized by FT-IR, TGA, SEM and X-ray diffraction. The swelling behavior of the membranes showed that membranes (PVA-P)1–3 exhibited the highest swelling capacity in different solvents. Their antibacterial against (Gram-negative), (Gram-positive) bacteria, and in vitro drug loading and release activities were evaluated. Additionally, metal ions adsorption capacity for copper, cobalt and mercury ions was studied. (PVA-AG) membrane performed the highest inhibitory effect to E. coli, Proteus, S. aureus and B. subtilis bacteria reached 22.9, 25.46, 24.9 and 30.56, respectively. Furthermore, in vitro controlled loading and release of lidocaine, (PVA-A)1 membrane revealed remarkable ability reached 57.37% and 94.59%, respectively. Hydrogel (PVA-AG) showed the highest metal ions (copper, cobalt and mercury) uptake efficiency (64.5, 69.5 and 73), respectively. Based on results, the prepared membranes can be suggested as promising agents for antibacterial, drug delivery systems and metal ions removal from aqueous medium.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Condensed Matter Physics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献