Fabrication of electrospun polyamide–weathered basalt nano-composite as a non-conventional membrane for basic and acid dye removal

Author:

El-Sheikh M. N.,Metwally Bahaa S.,Mubarak Mahmoud. F.,Ahmed Hanan A.,Abdel Moghny Thanaa,Zayed Ahmed M.

Abstract

Abstract In this study, an adsorptive electrospun polyamide membrane (ESPA) and electrospun polyamide–weathered basalt composite membrane (ESPA-WB) were prepared by an electrospinning process at room temperature. Hence, the WB structure was built as a polymeric membrane separation film in combination with the ESPA matrix as a composite nano-filtration membrane. Then, the ESPA and ESPA-WB membranes were characterized using BET surface area analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM). To avoid cracks forming during the sintering process, the WB should be added in certain percentages. The microstructures of the prepared membranes were investigated to evaluate their efficiency for basic and acidic dyesʼ removal and their permeation flux. Compared with the ESPA, the ESPA-WB membrane combines the characteristics of WB and ESPA, which greatly enhances the performance of both methylene blue (MB) and methyl orange (MO) dyes removal from synthetic wastewater. The outcomes of this study indicated that the dye uptake in the case of ESPA-WB is higher than that of ESPA, and it decreases with an increase in dye concentrations. The obtained membrane ESPA-WB showed both an excellent anti-dye fouling and a good rejection property for both dyes (i.e. 90% rejection for MB and 74% for MO) with no sign of contamination by the applied dyes. It was found that the structure of the ESPA-WB membrane contains a large number of several adsorption sites which leads to an increase in the removal rate of dyes. Hence, this study demonstrated a non-conventional strategy to prepare an effective adsorptive nano-composite membrane that can be applied as a highly recyclable one for the removal of organic dyes. Graphic abstract

Funder

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Condensed Matter Physics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3