Prediction of compressive strength of geopolymer concrete using random forest machine and deep learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00670-w.pdf
Reference50 articles.
1. Aslani, F., Deghani, A., & Asif, Z. (2020). Development of lightweight rubberized geopolymer concrete by using polystyrene and recycled Crumb–Rubber aggregates. Journal of Materials in Civil Engineering, 32(2), 04019345. https://doi.org/10.1061/(asce)mt.1943-5533.0003008
2. Biondi, L., Vlachakis, C., & Hamilton, A. (2019). Ambient cured fly ash geopolymer coatings for concrete. Materials. https://doi.org/10.3390/ma12060923
3. Borges, P. H. R., Fonseca, L. F., Nunes, V. A., Panzera, T. H., & Martuscelli, C. C. (2014). Andreasen particle packing method on the development of geopolymer concrete for civil engineering. Journal of Materials in Civil Engineering, 26(April), 692–697. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000838
4. Central Electricity Authority. (2019). Flyash generation at coal/lignite based thermal power stations and its utilization in the country.
5. Chandrasekhar Reddy, K. (2020). Investigation of mechanical and microstructural properties of fiber-reinforced geopolymer concrete with GGBFS and metakaolin: Novel raw material for geopolymerisation. SILICON. https://doi.org/10.1007/s12633-020-00780-z
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Estimation of Compressive Strength of Rubberised Slag Based Geopolymer Concrete Using Various Machine Learning Techniques Based Models;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-08-28
2. Assessment of ML techniques and suitability to predict the compressive strength of high-performance concrete (HPC);Asian Journal of Civil Engineering;2024-08-13
3. Soft computing techniques for predicting the compressive strength properties of fly ash geopolymer concrete using regression-based machine learning approaches;Journal of Building Pathology and Rehabilitation;2024-06-19
4. Machine learning-based prediction of heavy metal immobilization rate in the solidification/stabilization of municipal solid waste incineration fly ash (MSWIFA) by geopolymers;Journal of Hazardous Materials;2024-04
5. Towards a Reliable Design of Geopolymer Concrete for Green Landscapes: A Comparative Study of Tree-Based and Regression-Based Models;Buildings;2024-02-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3