Artificial neural networks and support vector regression for predicting slump and compressive strength of PET-modified concrete
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42107-024-01110-z.pdf
Reference38 articles.
1. Akkouri, N., Bourzik, O., Baba, K., & Nounah, A. (2022). Experimental study of the thermal and mechanical properties of concrete incorporating recycled polyethylene. In 3rd international congress on materials & structural stability, vol. 58 (pp. 1525–1529). https://doi.org/10.1016/j.matpr.2022.03.293
2. Albano, C., Camacho, N., Hernández, M., Matheus, A., & Gutiérrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management, 29(10), 2707–2716. https://doi.org/10.1016/j.wasman.2009.05.007
3. Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. https://doi.org/10.1016/j.jmrt.2020.02.090
4. Babafemi, A. J., Sirba, N., Paul, S. C., & Miah, M. J. (2022). Mechanical and durability assessment of recycled waste plastic (Resin8 and PET) eco-aggregate concrete. Sustainability, 14(9), Article 9. https://doi.org/10.3390/su14095725
5. Bamigboye, G. O., Tarverdi, K., Umoren, A., Bassey, D. E., Okorie, U., & Adediran, J. (2021). Evaluation of eco-friendly concrete having waste PET as fine aggregates. Cleaner Materials, 2, 100026. https://doi.org/10.1016/j.clema.2021.100026
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tree-based machine learning models for predicting the bond strength in reinforced recycled aggregate concrete;Asian Journal of Civil Engineering;2024-09-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3