Evolutionary optimization of machine learning algorithm hyperparameters for strength prediction of high-performance concrete
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00698-y.pdf
Reference85 articles.
1. Ahmad, A., Ostrowski, K. A., Maślak, M., Farooq, F., Mehmood, I., & Nafees, A. (2021). Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials, 14, 4222. https://doi.org/10.3390/ma14154222
2. Aïtcin, P.-C. (1998). High performance concrete. CRC Press. https://doi.org/10.4324/9780203475034
3. Al Yamani, W. H., Ghunimat, D. M., & Bisharah, M. M. (2023). Modeling and predicting the sensitivity of high-performance concrete compressive strength using machine learning methods. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00614-4
4. Alqahtani, M., Gumaei, A., Mathkour, H., & Maher Ben Ismail, M. (2019). A genetic-based extreme gradient boosting model for detecting intrusions in wireless sensor networks. Sensors, 19, 4383. https://doi.org/10.3390/s19204383
5. Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of Membrane Computing, 1, 279–291. https://doi.org/10.1007/s41965-019-00023-0
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Experimenting the effectiveness of waste materials in improving the compressive strength of plastic-based mortar;Case Studies in Construction Materials;2024-12
2. Reinforcement learning for multi-objective AutoML in vision-based structural health monitoring;Automation in Construction;2024-10
3. Novel Ensemble Learning Algorithm for Early Detection of Lower Back Pain Using Spinal Anomalies;Mathematics;2024-06-24
4. Predicting Compressive Strength of High-Performance Concrete Using Hybridization of Nature-Inspired Metaheuristic and Gradient Boosting Machine;Mathematics;2024-04-22
5. Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives;Journal of Building Engineering;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3