Comparative study of machine learning methods to predict compressive strength of high-performance concrete and model validation on experimental data
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00836-6.pdf
Reference50 articles.
1. Al-Shamiri, A. K., Kim, J. H., Yuan, T. F., & Yoon, Y. S. (2019). Modeling the compressive strength of high-strength concrete: An extreme learning approach. Construction and Building Materials, 208, 204–219. https://doi.org/10.1016/j.conbuildmat.2019.02.165
2. Amario, M., Rangel, C. S., Pepe, M., & Toledo Filho, R. D. (2017). Optimization of normal and high strength recycled aggregate concrete mixtures by using packing model. Cement and Concrete Composites, 84, 83–92. https://doi.org/10.1016/j.cemconcomp.2017.08.016
3. Bansal, T., Talakokula, V., & Mathiyazhagan, K. (2021). Equivalent structural parameters based non-destructive prediction of sustainable concrete strength using machine learning models via piezo sensor. Measurement, 187, 110202. https://doi.org/10.1016/j.measurement.2021.110202
4. Bansal, T., Talakokula, V., & Sathujoda, P. (2022a). Machine learning-based monitoring and predicting the compressive strength of different blended cementitious systems using embedded piezo-sensor data. Measurement, 205, 112204. https://doi.org/10.1016/j.measurement.2022.112204
5. Bansal, T., Talakokula, V., & Sathujoda, P. (2022b). A machine learning approach for predicting the electro-mechanical impedance data of blended RC structures subjected to chloride laden environment. Smart Materials and Structures. https://doi.org/10.1088/1361-665X/ac3d6f
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hybrid Bayesian optimization-based deep learning model for modeling the condition of saltwater pipes in Hong Kong;International Journal of Construction Management;2024-02-05
2. EMI-Based Multi-sensing Technique for Monitoring Load Influence and Damage in Structural Elements Using Smart Sensing Units: A Numerical and Experimental Study;Journal of Vibration Engineering & Technologies;2023-10-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3