A machine learning approach for health monitoring of a steel frame structure using statistical features of vibration data
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00755-6.pdf
Reference38 articles.
1. Abé, M. (1998). Structural monitoring of civil structures using vibration measurement. Current practice and future. pp. 1–18. https://doi.org/10.1007/bfb0030439
2. Amezquita-Sanchez, J. P., & Adeli, H. (2016). Signal processing techniques for vibration-based health monitoring of smart structures. Archives of Computational Methods in Engineering, 23(1), 1–15. https://doi.org/10.1007/s11831-014-9135-7
3. An, Y. H., & Ou, J. P. (2014). Structural damage localisation for a frame structure from changes in curvature of approximate entropy feature vectors. Nondestructive Testing and Evaluation, 29(1), 80–97. https://doi.org/10.1080/10589759.2013.858716
4. Bandara, R. P., Chan, T. H. T., & Thambiratnam, D. P. (2014). Frequency response function based damage identification using principal component analysis and pattern recognition technique. Engineering Structures, 66, 116–128. https://doi.org/10.1016/j.engstruct.2014.01.044
5. Figueiredo, E., Park, G., Farrar, C. R., Worden, K., & Figueiras, J. (2011). Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, 10(6), 559–572. https://doi.org/10.1177/1475921710388971
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Shear capacity assessment of perforated steel plate shear wall based on the combination of verified finite element analysis, machine learning, and gene expression programming;Asian Journal of Civil Engineering;2024-07-16
2. A comprehensive review on health monitoring of joints in steel structures;Smart Materials and Structures;2024-06-19
3. Load Identification in Steel Structural Systems Using Machine Learning Elements: Uniform Length Loads and Point Forces;Buildings;2024-06-07
4. A Hybrid Convolutional and Recurrent Neural Network for Multi-Sensor Pile Damage Detection with Time Series;Sensors;2024-02-11
5. A convolutional neural network-based architecture for health monitoring of joint damages in a steel plane frame structure under temperature variability;Asian Journal of Civil Engineering;2023-10-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3