Predicting and optimizing the concrete compressive strength using an explainable boosting machine learning model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42107-023-00848-2.pdf
Reference36 articles.
1. Ben Chaabene, W., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889
2. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (Vol. 13–17-August, pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785.
3. Cheng, M. Y., Firdausi, P. M., & Prayogo, D. (2014). High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Engineering Applications of Artificial Intelligence, 29, 104–113. https://doi.org/10.1016/j.engappai.2013.11.014
4. Chou, J.-S., Chiu, C.-K., Farfoura, M., & Al-Taharwa, I. (2011). Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. Journal of Computing in Civil Engineering, 25(3), 242–253. https://doi.org/10.1061/(asce)cp.1943-5487.0000088
5. Chou, J. S., & Pham, A. D. (2013). Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Construction and Building Materials, 49, 554–563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring the interrelationships between composition, rheology, and compressive strength of self-compacting concrete: An exploration of explainable boosting algorithms;Case Studies in Construction Materials;2024-07
2. Machine learning-based model for moment capacity prediction and reliability analysis of PSC beams;Structures;2024-04
3. Hybrid machine learning models for classifying failure modes of unstiffened steel plate girders subjected to patch loading;Structures;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3