Machine and deep learning-based prediction of flexural moment capacity of ultra-high performance concrete beams with/out steel fiber
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42107-024-01064-2.pdf
Reference83 articles.
1. Abbas, Y. M., Fares, G., & Iqbal Khan, M. (2023). Depth-dependent flexural behavior of plain and bar-reinforced ultra-high-performance hybrid fiber-reinforced concrete –analytical, numerical, and uncertainty modeling. Structures. https://doi.org/10.1016/j.istruc.2023.03.184
2. Abuodeh, O. R., Abdalla, J. A., & Hawileh, R. A. (2020). Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques. Applied Soft Computing Journal. https://doi.org/10.1016/j.asoc.2020.106552
3. Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2022.e01234
4. Akeed, M. H., Qaidi, S., Ahmed, H. U., Faraj, R. H., Mohammed, A. S., Emad, W., Tayeh, B. A., & Azevedo, A. R. G. (2022). Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2022.e01290
5. Almustafa, M. K., & Nehdi, M. L. (2020). Machine learning model for predicting structural response of RC slabs exposed to blast loading. Engineering Structures. https://doi.org/10.1016/j.engstruct.2020.111109
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Applications of computational intelligence for predictive modeling of properties of blended cement sustainable concrete incorporating various industrial byproducts towards sustainable construction;Asian Journal of Civil Engineering;2024-09-06
2. Electrical resistivity of eco-friendly hybrid fiber-reinforced SCC: Effect of ground granulated blast furnace slag and copper slag content as well as hooked-end fiber length;Construction and Building Materials;2024-08
3. AI-driven design for the compressive strength of ultra-high performance geopolymer concrete (UHPGC): From explainable ensemble models to the graphical user interface;Materials Today Communications;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3