Abstract
Abstract
Athletes should pay more attention to their bone health, whether this relates to their longer-term bone health (e.g. risk of osteopenia and osteoporosis) or their shorter-term risk of bony injuries. Perhaps the easiest way to do this would be to modify their training loads, although this advice rarely seems popular with coaches and athletes for obvious reasons. As such, other possibilities to support the athletes’ bone health need to be explored. Given that bone is a nutritionally modified tissue and diet has a significant influence on bone health across the lifespan, diet and nutritional composition seem like obvious candidates for manipulation. The nutritional requirements to support the skeleton during growth and development and during ageing are unlikely to be notably different between athletes and the general population, although there are some considerations of specific relevance, including energy availability, low carbohydrate availability, protein intake, vitamin D intake and dermal calcium and sodium losses. Energy availability is important for optimising bone health in the athlete, although normative energy balance targets are highly unrealistic for many athletes. The level of energy availability beyond which there is no negative effect for the bone needs to be established. On the balance of the available evidence it would seem unlikely that higher animal protein intakes, in the amounts recommended to athletes, are harmful to bone health, particularly with adequate calcium intake. Dermal calcium losses might be an important consideration for endurance athletes, particularly during long training sessions or events. In these situations, some consideration should be given to pre-exercise calcium feeding. The avoidance of vitamin D deficiency and insufficiency is important for the athlete to protect their bone health. There remains a lack of information relating to the longer-term effects of different dietary and nutritional practices on bone health in athletes, something that needs to be addressed before specific guidance can be provided.
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference86 articles.
1. Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontology. 2017;18(6):931–46.
2. Dobbs MB, Buckwalter J, Saltzman C. Osteoporosis: the increasing role of the orthopaedist. Iowa Orthop J. 1999;19:43–52.
3. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl. 2):S3–7.
4. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series, 843. 1994. Geneva.
5. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献