What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials

Author:

Afonso JoséORCID,Andrade Renato,Rocha-Rodrigues Sílvia,Nakamura Fábio Yuzo,Sarmento Hugo,Freitas Sandro R.,Silva Ana Filipa,Laporta Lorenzo,Abarghoueinejad Maryam,Akyildiz Zeki,Chen Rongzhi,Pizarro Andreia,Ramirez-Campillo Rodrigo,Clemente Filipe Manuel

Abstract

Abstract Background Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. Objectives To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. Results Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. Conclusions There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose–response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. Registration OSF project (https://osf.io/6auyj/) and registration (https://osf.io/gu8ya).

Funder

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Reference429 articles.

1. ACSM. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer; 2018.

2. Association AH: Guidelines and statements. 2020. https://professional.heart.org/en/guidelines-and-statements/guidelines-and-statements-search. Accessed 25/10/2020.

3. Behm DG. The science and physiology of flexibility and stretching. Implications and applications in sport performance and health. Oxon: Routledge; 2019.

4. Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41(1):1–11. https://doi.org/10.1139/apnm-2015-0235.

5. Afonso J, Olivares-Jabalera J, Andrade R. Time to move from mandatory stretching? We need to differentiate “can i?” From “do i have to?” Front Physiol. 2021;12: 714166. https://doi.org/10.3389/fphys.2021.714166.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3