Performance Benefits of Pre- and Per-cooling on Self-paced Versus Constant Workload Exercise: A Systematic Review and Meta-analysis

Author:

van de Kerkhof Tessa M.ORCID,Bongers Coen C. W. G.ORCID,Périard Julien D.ORCID,Eijsvogels Thijs M. H.ORCID

Abstract

Abstract Background and Objective Exercise in hot environments impairs endurance performance. Cooling interventions can attenuate the impact of heat stress on performance, but the influence of an exercise protocol on the magnitude of performance benefit remains unknown. This meta-analytical review compared the effects of pre- and per-cooling interventions on performance during self-paced and constant workload exercise in the heat. Methods The study protocol was preregistered at the Open Science Framework (https://osf.io/wqjb3). A systematic literature search was performed in PubMed, Web of Science, and MEDLINE from inception to 9 June, 2023. We included studies that examined the effects of pre- or per-cooling on exercise performance in male individuals under heat stress (> 30 °C) during self-paced or constant workload exercise in cross-over design studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool for randomized trials. Results Fifty-nine studies (n = 563 athletes) were identified from 3300 records, of which 40 (n = 370 athletes) used a self-paced protocol and 19 (n = 193 athletes) used a constant workload protocol. Eighteen studies compared multiple cooling interventions and were included more than once (total n = 86 experiments and n = 832 paired measurements). Sixty-seven experiments used a pre-cooling intervention and 19 used a per-cooling intervention. Average ambient conditions were 34.0 °C [32.3–35.0 °C] and 50.0% [40.0–55.3%] relative humidity. Cooling interventions attenuated the performance decline in hot conditions and were more effective during a constant workload (effect size [ES] = 0.62, 95% confidence interval [CI] 0.44–0.81) compared with self-paced exercise (ES = 0.30, 95% CI 0.18–0.42, p = 0.004). A difference in performance outcomes between protocols was only observed with pre-cooling (ES = 0.74, 95% CI 0.50–0.98 vs ES = 0.29, 95% CI 0.17–0.42, p = 0.001), but not per-cooling (ES = 0.45, 95% CI 0.16–0.74 vs ES = 0.35, 95% CI 0.01–0.70, p = 0.68). Conclusions Cooling interventions attenuated the decline in performance during exercise in the heat, but the magnitude of the effect is dependent on exercise protocol (self-paced vs constant workload) and cooling type (pre- vs per-cooling). Pre-cooling appears to be more effective in attenuating the decline in exercise performance during a constant workload compared with self-paced exercise protocols, whereas no differences were found in the effectiveness of per-cooling.

Publisher

Springer Science and Business Media LLC

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3