Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict?

Author:

Dos’Santos ThomasORCID,Thomas Christopher,McBurnie Alistair,Comfort Paul,Jones Paul A.

Abstract

Abstract Background Most cutting biomechanical studies investigate performance and knee joint load determinants independently. This is surprising because cutting is an important action linked to performance and non-contact anterior cruciate ligament (ACL) injuries. The aim of this study was to investigate the relationship between cutting biomechanics and cutting performance (completion time, ground contact time [GCT], exit velocity) and surrogates of non-contact ACL injury risk (knee abduction [KAM] and internal rotation [KIRM] moments) during 90° cutting. Design Mixed, cross-sectional study following an associative design. 61 males from multidirectional sports performed six 90° pre-planned cutting trials, whereby lower-limb and trunk kinetics and kinematics were evaluated using three-dimensional (3D) motion and ground reaction force analysis over the penultimate (PFC) and final foot contact (FFC). Pearson’s and Spearman’s correlations were used to explore the relationships between biomechanical variables and cutting performance and injury risk variables. Stepwise regression analysis was also performed. Results Faster cutting performance was associated (p ≤ 0.05) with greater centre of mass (COM) velocities at key instances of the cut (r or ρ = 0.533–0.752), greater peak and mean propulsive forces (r or ρ = 0.449–0.651), shorter FFC GCTs (r or ρ = 0.569–0.581), greater FFC and PFC braking forces (r = 0.430–0.551), smaller hip and knee flexion range of motion (r or ρ = 0.406–0.670), greater knee flexion moments (KFMs) (r = 0.482), and greater internal foot progression angles (r = − 0.411). Stepwise multiple regression analysis revealed that exit velocity, peak resultant propulsive force, PFC mean horizontal braking force, and initial foot progression angle together could explain 64% (r = 0.801, adjusted 61.6%, p = 0.048) of the variation in completion time. Greater peak KAMs were associated with greater COM velocities at key instances of the cut (r or ρ = − 0.491 to − 0.551), greater peak knee abduction angles (KAA) (r = − 0.468), and greater FFC braking forces (r = 0.434–0.497). Incidentally, faster completion times were associated with greater peak KAMs (r = − 0.412) and KIRMs (r = 0.539). Stepwise multiple regression analysis revealed that FFC mean vertical braking force and peak KAA together could explain 43% (r = 0.652, adjusted 40.6%, p < 0.001) of the variation peak KAM. Conclusion Techniques and mechanics associated with faster cutting (i.e. faster COM velocities, greater FFC braking forces in short GCTs, greater KFMs, smaller hip and knee flexion, and greater internal foot progression angles) are in direct conflict with safer cutting mechanics (i.e. reduced knee joint loading, thus ACL injury risk), and support the “performance-injury conflict” concept during cutting. Practitioners should be conscious of this conflict when instructing cutting techniques to optimise performance while minimising knee joint loading, and should, therefore, ensure that their athletes have the physical capacity (i.e. neuromuscular control, co-contraction, and rapid force production) to tolerate and support the knee joint loading during cutting.

Publisher

Springer Science and Business Media LLC

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Reference163 articles.

1. Sweeting AJ, Aughey RJ, Cormack SJ, Morgan S. Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data. J Sports Sci. 2017;35(24):2439–45.

2. Sheppard JM, Dawes JJ, Jeffreys I, Spiteri T, Nimphius S. Broadening the view of agility: A scientific review of the literature. J Aust Strength Cond. 2014;22(3):6–25.

3. Young WB, Dawson B, Henry GJ. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int J Sports Sci Coach. 2015;10(1):159–69.

4. Robinson G, O’Donoghue P, Nielson P. Path changes and injury risk in English FA Premier League soccer. Int J Perf Anal Spor. 2011;11(1):40–56.

5. Nimphius S. Increasing agility. In: Joyce D, Lewindon D, editors. High-performance training for sports. Human Kinetics; 2014. p. 185–98.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3