Energy-effective artificial internet-of-things application deployment in edge-cloud systems

Author:

Xiang ZhengzheORCID,Zheng Yuhang,He Mengzhu,Shi Longxiang,Wang Dongjing,Deng Shuiguang,Zheng Zengwei

Abstract

AbstractRecently, the Internet-of-Things technique is believed to play an important role as the foundation of the coming Artificial Intelligence age for its capability to sense and collect real-time context information of the world, and the concept Artificial Intelligence of Things (AIoT) is developed to summarize this vision. However, in typical centralized architecture, the increasing of device links and massive data will bring huge congestion to the network, so that the latency brought by unstable and time-consuming long-distance network transmission limits its development. The multi-access edge computing (MEC) technique is now regarded as the key tool to solve this problem. By establishing a MEC-based AIoT service system at the edge of the network, the latency can be reduced with the help of corresponding AIoT services deployed on nearby edge servers. However, as the edge servers are resource-constrained and energy-intensive, we should be more careful in deploying the related AIoT services, especially when they can be composed to make complex applications. In this paper, we modeled complex AIoT applications using directed acyclic graphs (DAGs), and investigated the relationship between the AIoT application performance and the energy cost in the MEC-based service system by translating it into a multi-objective optimization problem, namely the CA$$^3$$ 3 D problem — the optimization problem was efficiently solved with the help of heuristic algorithm. Besides, with the actual simple or complex workflow data set like the Alibaba Cloud and the Montage project, we conducted comprehensive experiments to evaluate the results of our approach. The results showed that the proposed approach can effectively obtain balanced solutions, and the factors that may impact the results were also adequately explored.

Funder

National Natural Science Foundation of China

natural science foundation of zhejiang province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing AIoT in Transforming the Education Landscape;Advances in Computational Intelligence and Robotics;2024-02-23

2. AIoT Revolution;Advances in Computational Intelligence and Robotics;2024-02-23

3. Troy: Efficient Service Deployment for Windows Systems;Chinese Journal of Electronics;2024-01

4. Dynamic System Reconfiguration in Stable and Green Edge Service Provisioning;Mobile Networks and Applications;2023-11-17

5. RIS-assisted device-edge collaborative edge computing for industrial applications;Peer-to-Peer Networking and Applications;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3