Author:
Das Sajal K.,Ferragina Paolo
Publisher
Springer Berlin Heidelberg
Reference18 articles.
1. M. Atallah and U. Vishkin. Finding Euler tours in parallel. Journal of computer and system sciences, 29:330–337, 1984.
2. F. Chin and D. Houck. Algorithms for updating minimum spanning trees. Journal of Computer and System Science, 16:333–344, 1978.
3. S. K. Das and P. Ferragina. A fully-dynamic EREW parallel algorithm for updating MST. Technical Report CRPDC-94-8, Dept. of Computer Science, University of North Texas, Denton, May 1994.
4. D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsification. In TR 93-20. Dept. of Information and Computer Science, University of California, Irvine, 1993.
5. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification — a technique for speeding up Dynamic Graph Algorithms. Proc. of IEEE Symposium on Foundations of Computer Science, 60–69, 1992.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Work-Efficient Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-Window Model;Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures;2020-07-06
2. Improved Worst-Case Deterministic Parallel Dynamic Minimum Spanning Forest;Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures;2018-07-11
3. The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light;SIAM Journal on Discrete Mathematics;2012-01