1. P. Ilohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136: B864 (1964).
2. P. Gombas, “Die Statistische Theorïe des Atoms und ihre Anwendungen,” Springer, Vienna (1949); N. M. March, The Thomas-Fermi approximation in quantum mechanics, Advan. Phys. 6:1 (1957); J. Goodisman, On the partitioning of energy for atoms, ions and molecules, Theoret. Chim. Acta 15:165 (1973); J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A 2:1193 (1970); E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advan. Math. 23:22 (1977). See also J. Schwinger, Thomas-Fermi model: The leading correction, Phys. Rev. A 22: 1827 (1980).
3. C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46:618 (1934); M. Cohen and A. Dalgarno, Stationary properties of the HartreeFock approximation, Proc. Phys. Soc. (London) 77:748 (1961); W. A. Goddard III, Improved quantum theory of many-electron systems. IV. Properties of GF wave functions, J. Chem. Phys. 48: 5337 (1968).
4. G. Blyholder and C. A. Coulson, Basis of extended-Hückel formalism, Theoret. Chinn. Acta 10:316 (1968); J. Goodisman, The isoelectronic principle and the accuracy of binding energies in the Mickel method, J. Am. Chem. Soc. 91:6552 (1969); P. Politzer, R. K. Smith and S. D. Kasten, Energy calculations with the extended-Hückel method, Chem. Phys. Lett. 15: 226 (1972).
5. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42:95 (1973)