1. L. Adleman, J. DeMarrais and M. Huang, A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields, Algorithmic Number Theory, Lecture Notes in Computer Science, Springer-Verlag, 877 (1994) pp. 28–40.
2. G. Agnew, R. Mullin, I. Onyszchuk and S. Vanstone, An implementation for a fast public-key cryptosystem Journal of CryptologyVol. 3 (1991) pp. 63–79.
3. G. Agnew, R. Mullin and S. Vanstone, An implementation of elliptic curve cryptosystems over F
2
í55 IEEE Journal on Selected Areas in CommunicationsVol. 11 (1993) pp. 804–813.
4. D. Bailey C. Paar, Optimal extension fields for fast arithmetic in public-key algorithms, Advances in Cryptology-CRYPTO ‘88, Lecture Notes in Computer Science, Springer-Verlag, 1462 (1998) pp. 472485.
5. R. Balasubramanian and N. Koblitz, The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm, Journal of Cryptology,Vol. 11 (1998) pp. 141145.