Convergence results for an averaged LQR problem with applications to reinforcement learning

Author:

Pesare AndreaORCID,Palladino MicheleORCID,Falcone MaurizioORCID

Abstract

AbstractIn this paper, we will deal with a linear quadratic optimal control problem with unknown dynamics. As a modeling assumption, we will suppose that the knowledge that an agent has on the current system is represented by a probability distribution $$\pi $$ π on the space of matrices. Furthermore, we will assume that such a probability measure is opportunely updated to take into account the increased experience that the agent obtains while exploring the environment, approximating with increasing accuracy the underlying dynamics. Under these assumptions, we will show that the optimal control obtained by solving the “average” linear quadratic optimal control problem with respect to a certain $$\pi $$ π converges to the optimal control driven related to the linear quadratic optimal control problem governed by the actual, underlying dynamics. This approach is closely related to model-based reinforcement learning algorithms where prior and posterior probability distributions describing the knowledge on the uncertain system are recursively updated. In the last section, we will show a numerical test that confirms the theoretical results.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3