Abstract
AbstractThe problem of input-to-state stability (ISS) and its integral version (iISS) are considered for switched nonlinear systems with inputs, resets and possibly unstable subsystems. For the dissipation inequalities associated with the Lyapunov function of each subsystem, it is assumed that the supply functions, which characterize the decay rate and ISS/iISS gains of the subsystems, are nonlinear. The change in the value of Lyapunov functions at switching instants is described by a sum of growth and gain functions, which are also nonlinear. Using the notion of average dwell-time (ADT) to limit the number of switching instants on an interval, and the notion of average activation time (AAT) to limit the activation time for unstable systems, a formula relating ADT and AAT is derived to guarantee ISS/iISS of the switched system. Case studies of switched systems with saturating dynamics and switched bilinear systems are included for illustration of the results.
Funder
National Science Foundation
Air Force Office of Scientific Research
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献