Proteomic Study of Hepatic Nuclear Extracts in an Adaptive Acetaminophen Tolerance Model

Author:

Steele Pamela S.,Linder Mark W.,Valdes Roland,Franke Deanna D. H.,Jortani Saeed A.

Abstract

Abstract Introduction Variability in response to acetaminophen (APAP)-induced aseptic inflammation and tolerance to the impending hepatic damage has been described. To understand the mechanism of adaptive tolerance, we investigated the proteomic profiles of crude nuclear lysates in a mouse model. We hypothesized that pretreatment with low doses of APAP prior to a toxic dose results in differential protein expression. Materials and Methods Mice (BALB/C) were separated into three groups: the pretreated (PT) group received incremental doses of APAP while the last dose only (LD) and naïve groups were given saline vehicle. A toxic dose of APAP was administered on the seventh day to the PT and LD animals only and all groups were euthanized 3 h postdose. Total protein from crude hepatic nuclear lysates were applied to protein arrays and analyzed by immunoaffinity mass spectrometry. Results and Discussion Comparative data analyses of protein peaks revealed a protein that was significantly increased at m/z of 60,030 (p60) in the LD animals vs the other two groups. The closest match for the preliminary identification of the p60 protein based on a Swiss-Prot/TagIdent database search using the approximate isoelectric point and molecular weight information was Ccr4–Not complex subunit-2. This protein is a subunit of a multiprotein complex and serves as a transcriptional suppressor involved in controlling mRNA synthesis and degradation. Preliminary identification was also supported by Western blot analysis using anti-CNOT2 antibody. Conclusion Considering the APAP tolerance model, we conclude that toxicogenomic approaches such as nuclear profiling are useful tools in assessing differential expression of transcriptional factors involved in inflammatory response and adaptive tolerance to toxins.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3