Attentional Reinforcement Learning in the Brain

Author:

Yamakawa HiroshiORCID

Abstract

AbstractRecently, attention mechanisms have significantly boosted the performance of natural language processing using deep learning. An attention mechanism can select the information to be used, such as by conducting a dictionary lookup; this information is then used, for example, to select the next utterance word in a sentence. In neuroscience, the basis of the function of sequentially selecting words is considered to be the cortico-basal ganglia-thalamocortical loop. Here, we first show that the attention mechanism used in deep learning corresponds to the mechanism in which the cerebral basal ganglia suppress thalamic relay cells in the brain. Next, we demonstrate that, in neuroscience, the output of the basal ganglia is associated with the action output in the actor of reinforcement learning. Based on these, we show that the aforementioned loop can be generalized as reinforcement learning that controls the transmission of the prediction signal so as to maximize the prediction reward. We call this attentional reinforcement learning (ARL). In ARL, the actor selects the information transmission route according to the attention, and the prediction signal changes according to the context detected by the information source of the route. Hence, ARL enables flexible action selection that depends on the situation, unlike traditional reinforcement learning, wherein the actor must directly select an action.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software

Reference55 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.U., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008. Curran Associates Inc, New York (2017)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018)

3. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8) (2019)

4. Crosson, B.: Subcortical functions in language: a working model. Brain Lang. 25(2), 257–292 (1985)

5. Crosson, B.A.: Subcortical Functions in Language and Memory. Guilford Press, New York (1992)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3