Knowledge-Driven Intelligent Survey Systems Towards Open Science

Author:

Edelstein Elspeth,Pan Jeff Z.,Soares Ricardo,Wyner Adam

Abstract

AbstractIn this paper, we propose Knowledge Graph (KG), an articulated underlying semantic structure, as a semantic bridge between humans, systems, and scientific knowledge. To illustrate our proposal, we focus on KG-based intelligent survey systems. In state-of-the-art systems, information is hard-coded or implicit, making it hard for researchers to reuse, customise, link, or transmit structured knowledge. Furthermore, such systems do not facilitate dynamic interaction based on semantic structure. We design and implement a knowledge-driven intelligent survey system which is based on knowledge graph, a widely used technology that facilitates sharing and querying hypotheses, survey content, results, and analyses. The approach is developed, implemented, and tested in the field of Linguistics. Syntacticians and morphologists develop theories of grammar of natural languages. To evaluate theories, they seek intuitive grammaticality (well-formedness) judgments from native speakers, which either support hypotheses or provide counter-evidence. Our preliminary experiments show that a knowledge graph-based linguistic survey can provide more nuanced results than the traditional document-based grammaticality judgment surveys by allowing for tagging and manipulation of specific linguistic variables.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software

Reference22 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A divide and conquer framework for Knowledge Editing;Knowledge-Based Systems;2023-11

2. Knowledge representation of the state of a cloud-native application;International Journal on Software Tools for Technology Transfer;2023-06-22

3. DTN: Deep triple network for topic specific fake news detection;Journal of Web Semantics;2021-07

4. A Knowledge Graph Based Approach to Social Science Surveys;Data Intelligence;2021

5. Construction and Leverage Scientific Knowledge Graphs by Means of Semantic Technologies;Systems and Information Sciences;2020-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3