Connecting ideals in evolution algebras with hereditary subsets of its associated graph

Author:

Casado Yolanda Cabrera,Barquero Dolores Martín,González Cándido Martín,Tocino AliciaORCID

Abstract

AbstractIn this article, we introduce a relation including ideals of an evolution algebra A and hereditary subsets of vertices of its associated graph and establish some properties among them. This relation allows us to determine maximal ideals and ideals having the absorption property of an evolution algebra in terms of its associated graph. In particular, the maximal ideals can be determined through maximal hereditary subsets of vertices except for those containing $$A^2$$ A 2 . We also define a couple of order-preserving maps, one from the sets of ideals of an evolution algebra to that of hereditary subsets of the corresponding graph, and the other in the reverse direction. Conveniently restricted to the set of absorption ideals and to the set of hereditary saturated subsets, this is a monotone Galois connection. According to the graph, we characterize arbitrary dimensional finitely-generated (as algebras) evolution algebras under certain restrictions of its graph. Furthermore, the simplicity of finitely-generated perfect evolution algebras is described on the basis of the simplicity of the graph.

Funder

Ministerio de Ciencia e Innovación

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3