Author:
Long Tang Van,Hong Nguyen Xuan,Lieu Pham Thi
Funder
Hanoi National University of Education
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference25 articles.
1. Åhag, P., Cegrell, U., Czyż, R., Hiep, P.H.: Monge–Ampère measures on pluripolar sets. J. Math. Pures Appl. 92, 613–627 (2009)
2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)
3. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
4. Bremermann, H.J.: On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries. Trans. Am. Math. Soc. 91, 246–276 (1959)
5. Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)