Abstract
AbstractWe characterise those Banach spaces X which satisfy that L(Y, X) is octahedral for every non-zero Banach space Y. They are those satisfying that, for every finite dimensional subspace Z, $$\ell _\infty $$
ℓ
∞
can be finitely-representable in a part of X kind of $$\ell _1$$
ℓ
1
-orthogonal to Z. We also prove that L(Y, X) is octahedral for every Y if, and only if, $$L(\ell _p^n,X)$$
L
(
ℓ
p
n
,
X
)
is octahedral for every $$n\in {\mathbb {N}}$$
n
∈
N
and $$1<p<\infty $$
1
<
p
<
∞
. Finally, we find examples of Banach spaces satisfying the above conditions like $${\textrm{Lip}}_0(M)$$
Lip
0
(
M
)
spaces with octahedral norms or $$L_1$$
L
1
-preduals with the Daugavet property.
Funder
Ministerio de Ciencia e Innovación
Junta de Andalucía
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference22 articles.
1. Abrahansen, T.A., Lima, V., Nygaard, O.: Remarks on diameter two properties. J. Convex Anal. 20(2), 439–452 (2013)
2. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Springer, Berlin (2006)
3. Avilés, A., Martínez-Cervantes, G.: Complete metric spaces with property (Z) are length spaces. J. Math. Anal. Appl. 473(1), 334–344 (2019)
4. Avilés, A., Martínez-Cervantes, G., Rueda Zoca, A.: $$L$$-orthogonal elements and $$L$$-orthogonal sequences, to appear in Int. Math. Res. Not
5. Becerra, J., Martín, M.: The Daugavet property for Lindenstrauss spaces. In: Jesus, M.F.C., William, B.J. (eds.) Methods in Banach Space Theory. London Mathematical Society Lecture Note Series, vol. 337, pp. 91–96. (2006)