Point line geometry in the tropical plane

Author:

Tewari Ayush KumarORCID

Abstract

AbstractWe study the classical result by Bruijn and Erdős regarding the bound on the number of lines determined by a n-point configuration in the plane, and in the light of the recently proven Tropical Sylvester-Gallai theorem, come up with a tropical version of the above-mentioned result. In this work, we introduce stable tropical lines, which help in answering questions pertaining to incidence geometry in the tropical plane. Projective duality in the tropical plane helps in translating the question for stable lines to stable intersections that have been previously studied in depth. Invoking duality between Newton subdivisions and line arrangements, we are able to classify stable intersections with shapes of cells in subdivisions, and this ultimately helps us in coming up with a bound. In this process, we also encounter various unique properties of linear Newton subdivisions which are dual to tropical line arrangements.

Funder

Deutsche Forschungsgemeinschaft

Mathematisches Forschungsinstitut Oberwolfach gGmbH

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Ardila, F., Develin, M.: Tropical hyperplane arrangements and oriented matroids. Mathematische Zeitschrift 262(4), 795–816 (2009)

2. Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press, Cambridge (1997)

3. Brandt, M., Jones, M., Lee, C., Ranganathan, D.: Incidence geometry and universality in the tropical plane. J. Comb. Theory Series A 159, 26–53 (2018)

4. Brugallé, E., Itenberg, I., Mikhalkin, G., Shaw, K.: Brief introduction to tropical geometry. arXiv preprint arXiv:1502.05950 (2015)

5. de Bruijn, N.G., Erdös, P.: On a combinatorial problem. Proceedings of the Section of Sciences of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 51(10), 1277–1279 (1948)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3