Abstract
AbstractThe objective of this work is an existence proof for variational solutions u to parabolic minimizing problems.
Here, the functions being considered are defined on a metric measure space $$({\mathcal {X}}, d, \mu )$$
(
X
,
d
,
μ
)
. For such parabolic minimizers that coincide with Cauchy-Dirichlet data $$\eta $$
η
on the parabolic boundary of a space-time-cylinder $$\varOmega \times (0, T)$$
Ω
×
(
0
,
T
)
with an open subset $$\varOmega \subset {\mathcal {X}}$$
Ω
⊂
X
and $$T > 0$$
T
>
0
, we prove existence in the parabolic Newtonian space $$L^p(0, T; {\mathcal {N}}^{1,p}(\varOmega ))$$
L
p
(
0
,
T
;
N
1
,
p
(
Ω
)
)
. In this paper we generalize results from Collins and Herán (Nonlinear Anal 176:56–83, 2018) where only time-independent Cauchy–Dirichlet data have been considered. We argue completely on a variational level.
Funder
Friedrich Naumann Stiftung
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference55 articles.
1. Ambrosio, L.: Minimizing movements. R. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)
2. Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn. Math. 26, 175–188 (2002)
3. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics. European Mathematical Society, Zurich (2011)
4. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for $$p$$-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203 (2003)
5. Björn, J., Shanmugalingam, N.: Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces. J. Math. Anal. Appl. 332, 190–208 (2007)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献