Existence of variational solutions to a Cauchy–Dirichlet problem with time-dependent boundary data on metric measure spaces

Author:

Collins MichaelORCID

Abstract

AbstractThe objective of this work is an existence proof for variational solutions u to parabolic minimizing problems. Here, the functions being considered are defined on a metric measure space $$({\mathcal {X}}, d, \mu )$$ ( X , d , μ ) . For such parabolic minimizers that coincide with Cauchy-Dirichlet data $$\eta $$ η on the parabolic boundary of a space-time-cylinder $$\varOmega \times (0, T)$$ Ω × ( 0 , T ) with an open subset $$\varOmega \subset {\mathcal {X}}$$ Ω X and $$T > 0$$ T > 0 , we prove existence in the parabolic Newtonian space $$L^p(0, T; {\mathcal {N}}^{1,p}(\varOmega ))$$ L p ( 0 , T ; N 1 , p ( Ω ) ) . In this paper we generalize results from Collins and Herán (Nonlinear Anal 176:56–83, 2018) where only time-independent Cauchy–Dirichlet data have been considered. We argue completely on a variational level.

Funder

Friedrich Naumann Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Reference55 articles.

1. Ambrosio, L.: Minimizing movements. R. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)

2. Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn. Math. 26, 175–188 (2002)

3. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics. European Mathematical Society, Zurich (2011)

4. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for $$p$$-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203 (2003)

5. Björn, J., Shanmugalingam, N.: Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces. J. Math. Anal. Appl. 332, 190–208 (2007)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3